
 

 

Flory- Huggins theory  

From the thermodynamic point of view, dissolution of a polymer into a solvent is favourable when 

Gibbs free energy of mixing is negative. This can happen when either ΔHmix is negative or the 

product (TΔSmix) of the temperature and the entropy of mixing is greater than the enthalpy of 

mixing (ΔHmix). The amount of change for entropy of mixing (ΔSmix) of polymer solution is always 

positive and relatively smaller than small molecules. Anyhow you have to calculate the values of 

ΔHmix and ΔSmix for the determination of ΔGmix. The Flory–Huggins theory uses the lattice model 

to arrange the polymer chains and solvent molecules for the determination of ΔHmix and ΔSmix. The 

simplest version of this lattice chain theory is generally referred to as Flory–Huggins mean-field 

theory. It is assumed that there is no volume change for polymer solution mixing (ΔVmix = 0). Thus 

the expression of ΔSmix for polymer in solution will be (using the Flory-Huggins theory) 

ΔSmix =  −R [𝜙1𝑙𝑛𝜙1 +
𝜙2

𝑛
𝑙𝑛𝜙2] 

whereϕ1, ϕ2 are the volume fractions or number fractions of the component 1 and 2. n is the lattice 

sites occupied per polymer or degree of polymerization. The expression of ΔHmix for polymer in 

solution will be 

ΔHmix = 𝑅𝑇𝜒12𝜙1𝜙2  

where χ12 is the Flory-Huggins binary interaction parameter, R is the universal gas constant and T 

is the absolute temperature. Thus the expression of ΔGmix for polymer in solution will be 

ΔGmix =  RT [𝜙1𝑙𝑛𝜙1 +
𝜙2

𝑛
𝑙𝑛𝜙2 + 𝜒12𝜙1𝜙2] 

Entropy of polymer mixing: Now consider step by step to determine the entropy of polymer 

mixing. For simplicity first consider regular solutions and then will move to polymer solutions. 

The Flory–Huggins theory uses the lattice model to arrange the two components in lattice sites. 

When two or more components (chemical species) are mixed together mixtures are formed. In case 

of two components mixing it is termed binary mixtures, for three components it is termed ternary 

mixtures. Whatever be the situation entropy always favours mixing. See the schematic presentation 

below to understand the entropy of mixing. 

Consider two components having volume V1 and V2 respectively and the total volume V (V = V1+ 

V2). 

 

 

 

 

Thus volume fraction of component 1 will be 

V1 V2 
+ → φ1 φ2 



 

 

𝜙1 =
𝑉1

𝑉1 + 𝑉2
=

𝑉1

𝑉
 

Similarly volume fraction of component 2 will be 

𝜙2 =
𝑉2

𝑉1 + 𝑉2
=

𝑉2

𝑉
= 1 − 𝜙1 

[For better understanding take the help of an example. Suppose two components having volume 

10L and 40L respectively. Total volume (10+40 = 50L). Then volume fraction of component 1 is 

10/50 = 0.2 and the volume fraction of component 2 is 0.8.] 

Now consider the following schematic presentation.  

 

 

 

 

 

The volumes of two components are still V1 and V2 but V1&V2 are made by n1&n2number of lattice 

sites. Again the volume of each sites is v0 and total sites are n (n1+n2 = n). Thus V1 = n1v0, V2 = 

n2v0and V = nv0. This is an assumption that components 1 and 2 both have the same volume of 

their lattice site. Clearly the volume of blue circle and red circle is equal and that is v0. Keep in 

mind that it is a 2D presentation, in 3D presentation circle will be sphere. Thus volume fraction 

can be replaced by number fraction. 

Thus number fraction of component 1 will be 

𝜙1 =
𝑉1

𝑉1 + 𝑉2
=

𝑉1

𝑉
=

𝑛1𝑣0

𝑛𝑣0
=

𝑛1

𝑛
 

and the number fraction of component 2 will be 

𝜙2 =
𝑉2

𝑉1 + 𝑉2
=

𝑉2

𝑉
= 1 − 𝜙1 =

𝑛2

𝑛
 

Now consider the polymer solution which means polymer mixed with solvent. See the following 

schematic presentation. 
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V1 V2 V1+ V2 

Lattice site 

+ → 
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A polymer chain is formed by combining many lattice sites which depend on the monomer units. 

Each monomer unit occupies one lattice site. Let one polymer chain is formed by combining nm 

number of monomer units and there are np number of polymer chains. But each solvent molecule 

occupies one lattice site. ϕp is the volume fraction of polymer and n is the total sites Thus  

Number of polymer chains = total lattice sites × volume fraction of polymer / lattice sites occupied 

by single polymer chain i.e. 

𝑛𝑝 = 𝑛
𝜙𝑝

𝑛𝑚
     𝑜𝑟   𝜙𝑝 =

𝑛𝑝𝑛𝑚

𝑛
 

❖ It will be easier to understand with mathematical examples. Let mixed polymer [polymer 

contain 10 (np) polymer chains, each chain has 200 (nm) monomer units. Thus it will occupy 

2000 lattice sites] with solvent molecules (occupy 8000 lattice sites). Total lattice site 

n=10000, then10 = 10000 ×
0.2

200
 as ϕp(0.2) = 

2000

10000
. 

And the number of solvent molecules is 

𝑛𝑠 = 𝑛(1 − 𝜙𝑝)        𝑜𝑟   𝜙𝑠 =
𝑛𝑠

𝑛
 

where ns and ϕs are the number of lattice sites occupied by solvent molecules and volume fraction 

of solvent respectively. 

Once we have number of polymer chains and solvent molecules, entropy can be calculated using 

the equation 

𝑆 = 𝑘 𝑙𝑛 𝛺 

where S is entropy, k is Boltzmann constant and Ω is the arrangement (possible distribution or 

number of states) of polymer chains and solvent molecules on the lattice. These two equations 

needed to calculate S 

𝛺 =
𝑁!

𝑛𝑝!𝑛𝑠!
and Stirling’s approximation𝑙𝑛 𝑥! ≈ 𝑥𝑙𝑛 𝑥 − 𝑥 

There are four states, entropy of polymer before mixing and after mixing, entropy of solvent before 

mixing and after mixing. Therefore, we can write down the entropy per molecule as 

𝑆𝑝
𝐵 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 𝑜𝑛𝑒 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 𝑐ℎ𝑎𝑖𝑛 𝑏𝑒𝑓𝑜𝑟𝑒 𝑚𝑖𝑥𝑖𝑛𝑔  

             = 𝑘 ln(𝑛𝑝𝑛𝑚𝑣0) 

𝑆𝑠
𝐵 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 𝑜𝑛𝑒 𝑠𝑜𝑙𝑣𝑒𝑛𝑡 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑚𝑖𝑥𝑖𝑛𝑔  

             = 𝑘 ln(𝑛𝑠𝑣0),as each solvent molecule occupy one site 



 

 

𝑆𝑝
𝐴 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 𝑜𝑛𝑒 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 𝑐ℎ𝑎𝑖𝑛 𝑎𝑓𝑡𝑒𝑟 𝑚𝑖𝑥𝑖𝑛𝑔  

             = 𝑘 ln[(𝑛𝑝𝑛𝑚 + 𝑛𝑠)𝑣0] 

𝑆𝑠
𝐴 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 𝑜𝑛𝑒 𝑠𝑜𝑙𝑣𝑒𝑛𝑡 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑎𝑓𝑡𝑒𝑟 𝑚𝑖𝑥𝑖𝑛𝑔  

             = 𝑘 ln[(𝑛𝑝𝑛𝑚 + 𝑛𝑠)𝑣0] 

 

Thus total entropy change due to polymer mixing with solvents 

ΔSmix = 𝑛𝑝𝑆𝑝
𝐴 + 𝑛𝑠𝑆𝑠

𝐴 − 𝑛𝑝𝑆𝑝
𝐵 − 𝑛𝑠𝑆𝑠

𝐵 

= −𝑘 [𝑛𝑝 𝑙𝑛 (
𝑛𝑝𝑛𝑚

𝑛𝑝𝑛𝑚 + 𝑛𝑠
) + 𝑛𝑠 𝑙𝑛 (

𝑛𝑠

𝑛𝑝𝑛𝑚 + 𝑛𝑠
)] 

= −𝑘[𝑛𝑝 𝑙𝑛 𝜙𝑝 + 𝑛𝑠 𝑙𝑛 𝜙𝑠] 

Divided by N, the equation become 

ΔSmix

𝑛
= −𝑘 [

𝑛𝑝

𝑛
 𝑙𝑛 𝜙𝑝 +

𝑛𝑠

𝑛
 𝑙𝑛 𝜙𝑠] 

= −𝑘 [
𝜙𝑝

𝑛𝑚
 𝑙𝑛 𝜙𝑝 + 𝜙𝑠 𝑙𝑛 𝜙𝑠] 

 

Enthalpy of polymer mixing: Enthalpy of polymer mixing can be calculated by following steps 

i) counting total number of interactions of polymer–solvent system before and after mixing ii) 

values of their interaction energies. 

Let 𝑢𝑠𝑠, 𝑢𝑝𝑝, and 𝑢𝑝𝑠are the interaction energies between adjacent lattice sites for a solvent–solvent 

(S–S) contact, a polymer–polymer (P–P) contact, and a polymer–solvent (P–S) contact 

respectively. Each lattice site has a definite coordination number (Z) depending on the lattice. For 

square lattice the coordination number Z = 4 and for cubic lattice the coordination number Z = 6 

respectively. Z also denotes the number of adjacent lattice sites. 

This is a square lattice 

 

 

 

 



 

 

Each lattice site (shown as blue circle) has 4 interactions (shown as blue bold line) with adjacent 

lattice sites (shown as red circle). There are no interactions if they are not adjacent (shown as black 

circle). 

The square lattice of polymer-solvent interaction can be shown as 

 

 

 

Here total sites are eight (four for polymer and four for solvents). Before mixing there are four P–

P contacts and four S–S contacts and after mixing there are two P–P contacts, two S–S contacts 

and four P–S contacts. Let the interaction energies of P-P contact, S-S contact and P-S contact are 

upp, uss and ups respectively. 

The interaction energy before mixing = 4upp+ 4uss 

The interaction energy after mixing = 2upp+ 2uss+ 4ups 

Total energy change = 2upp+ 2uss+ 4ups– (4upp+ 4uss) 

           = 4ups– 2(upp+ uss) 

There are eight sites or eight bonds from which two P-S contacts or bonds formed. Thus for each 

newly created P–S contact, the energy change is 

=
𝑡𝑤𝑜

𝑒𝑖𝑔ℎ𝑡
 [4ups –  2(upp  +  uss)] 

=
2

8
[4ups –  2(upp  +  uss)] 

= ups – 
(upp  +  uss)

2
 

The χ (chi) parameter, also called Flory’s χ parameter or Flory–Huggins χ parameter, is expressed 

as 

𝜒 =

𝑍 ⌈ups –  
(upp  +  uss)

2
⌉

𝑘𝑇
 

where Z is coordination number, k is Boltzmann constant and T is absolute temperature. When χ 

= (-)ve, P-S contacts are favoured and for χ = (+)ve, P-P & S-S contacts are favoured. 

Probability of adjacent contacts are 

+ + → 

uss 

uss 

uss uss uss uss 

upp 

upp upp 

upp 

upp upp 

ups 

ups 

ups 

ups 



 

 

contact Interaction 

energies 

Probability 

before mixing 

Probability after 

mixing 

P-P upp ϕp (ϕp)
2 

S-S uss ϕs = 1 -ϕp (ϕs)
2 =(1 -ϕp)

2 

P-S ups 0 2ϕpϕs= 2ϕp(1 -ϕp) 

 

Now we will count the total number of interactions of polymer–solvent system before and after 

mixing with the help of probability. The probability for formation of a P–P contact, S–S contact 

and P–S contact are (ϕp)
2, (ϕs)

2 or (1 -ϕp)
2 and 2ϕpϕs or 2ϕp(1 -ϕp) respectively. 

Total interaction energy before mixing 

For polymer = (Zn/2)uppϕp 

For solvent = (Zn/2)ussϕs= (Zn/2)uss(1 -ϕp) 

For both polymer and solvent = (Zn/2)uppϕp + (Zn/2)uss(1 -ϕp) = (Zn/2) [uppϕp + uss(1 -ϕp)] = HB 

 

And total interaction energy after mixing 

HA = (Zn/2) [{uppϕp + ups(1 -ϕp)} ϕp + {upsϕp + uss(1 -ϕp)}(1 -ϕp)] 

= (Zn/2)[upp(ϕp)
2 + 2upsϕp (1 -ϕp) + uss(1 -ϕp)

2] 

 

Thus, total interaction energy for mixing is 

ΔHmix= HA -HB 

= (Zn/2)[upp(ϕp)
2 + 2upsϕp (1 -ϕp) + uss(1 -ϕp)

2] - (Zn/2) [uppϕp + uss(1 -ϕp)] 

= (Zn/2)[upp(ϕp)
2 + 2upsϕp (1 -ϕp) + uss(1 -ϕp)

2 -uppϕp - uss(1 -ϕp)] 

= (Zn/2) [upp{(ϕp)
2-ϕp}+ 2upsϕp (1 -ϕp)+ uss{1 - 2ϕp+(ϕp)

2 -1 + ϕp}] 

= (Zn/2) [uppϕp (ϕp-1)+ 2upsϕp (1 -ϕp)+ ussϕp (ϕp-1)] 

= (Zn/2) [-uppϕp (1 -ϕp) + 2upsϕp (1 -ϕp)- ussϕp (1 -ϕp)] 

= (Zn/2) ϕp (1 -ϕp) (2ups- upp- uss) 

Hence interaction energy for mixing per lattice site is 

= (ΔHmix / n) = [(Zn/2) ϕp (1 -ϕp) (2ups- upp- uss)] / n 

= (Z/2) ϕp (1 -ϕp) (2ups- upp- uss) = χϕp (1 -ϕp)kT 



 

 

Where  

𝜒 =

𝑍 ⌈ups –  
(upp  +  uss)

2
⌉

𝑘𝑇
 

χ (chi) is Flory’s χ parameter or Flory–Huggins χ parameter. 

It was assumed in Flory–Huggins theory that there is no volume change after mixing, again the 

monomer units of polymer chain and solvent molecule have fit on the same lattice sites. But in 

reality, volume changes after mixing and also packing mismatch in lattice sites. These volume 

effects lead to deviation from lattice site model and sum up into the interaction parameter χ which 

have nontrivial dependency on composition, chain length and temperature. Thus χ(T) can be 

written as 

χ(T) ≅ A +
𝐵

𝑇
 

where A is temperature independent entropic part and B/T is enthalpic part.  

The expression of Flory–Huggins equation for polymer in solution is 

ΔGmix = ΔHmix- TΔSmix 

= 𝑘𝑇𝜒𝜙𝑝(1 − 𝜙𝑝) −  𝑇 [−𝑘 (
𝜙𝑝

𝑛𝑚
 𝑙𝑛 𝜙𝑝 + 𝜙𝑠 𝑙𝑛 𝜙𝑠)] 

           = kT[
𝜙𝑝

𝑛𝑚
 𝑙𝑛 𝜙𝑝 + 𝜙𝑠 𝑙𝑛 𝜙𝑠 + 𝜒𝜙𝑝(1 − 𝜙𝑝)] 

 

 

 

Lower and Upper critical solution temperatures 

 

There are varieties of Flory Huggins phase diagram depending on the nature of solute and solvent 

molecules. In the solute-solvent systems, solute can be small molecule or polymer and solvent can 

be liquid molecule or another polymer. Thus the systems are small molecule-solvent, polymer-

solvent (polymer solution) and polymer-polymer (blend) system. Though polymer solutions phase 

diagram is of main interest but other systems will also be shown. Flory–Huggins interaction 

parameter χ(T) can be written as 

χ(T) ≅ A +
𝐵

𝑇
 

When B > 0, with increasing temperature χ decreases and the highest temperature of the two-phase 

region is termed as upper critical solution temperature (UCST), Tc. When the solution temperature 

is more than Tc, it makes a stable homogeneous solution. 



 

 

When B < 0, with increasing temperature χ increases and the lowest temperature of two-phase 

region is termed as lower critical solution temperature (LCST), Tc. When the solution temperature 

is less than Tc, it makes a stable homogeneous solution. 

The schematic presentations of different Flory Huggins phase diagrams are shown below.  
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