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NMR Spectroscopy

N.M.R. = Nuclear Magnetic Resonance

Basic Principles

Spectroscopic technique, thus relies on the interaction between material and electromagnetic radiation

The nuclei of all atoms possess a nuclear quantum number, I. (I�0, always multiples of �.)

Only nuclei with spin number (I) >0 can absorb/emit electromagnetic radiation.

Even atomic mass & number:  I = 0 (12C, 16O)

Even atomic mass & odd number:  I = whole integer (14N, 2H, 10B)

Odd atomic mass:  I = half integer (1H, 13C, 15N, 31P)

��

The spinning nuclei possess angular momentum, P, and charge, and so an associated magnetic moment, �.

�

�=� x P

Where � is the gyromagnetic ratio
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NMR Spectroscopy

The spin states of the nucleus are quantified:

 I, (I - 1), (I - 2), … , -I

Basic Principles
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Chapter 13:  Nuclear Magnetic Resonance (NMR) Spectroscopy
direct observation of the H’s and C’s of a molecules

Nuclei are positively charged and spin on an axis;  they create a
tiny magnetic field

+
+

Not all nuclei are suitable for NMR.  
1H and 13C are the most important NMR active nuclei in 

organic chemistry 
Natural Abundance

1H  99.9% 13C  1.1%
12C  98.9%  (not NMR active)

(a) Normally the nuclear magnetic fields are randomly oriented
(b) When placed in an external magnetic field (Bo), the nuclear 

magnetic field can either be aligned with the external magnetic 
or oppose the external magnetic field 
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NMR Spectroscopy
Basic Principles

Bo 

In the ground state all nuclear spins are disordered, and 
there is no energy difference between them. They are 
degenerate.

Since they have a magnetic moment, when we apply a 
strong external magnetic field (Bo), they orient either 
against or with it:
There is always a small excess of nuclei (population 
excess) aligned with the field than pointing against it.
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Basic Principles

Each level has a different population (N), and the difference between the two is related 

to the energy difference by the Boltzmman distribution:

N�/N� = e�E/kT

�E for 1H at 400 MHz (B0 = 9.5 T) is 3.8 x 10-5 Kcal/mol

� �     N�/N� =1.000064

 The surplus population is small (especially when compared to UV or IR).

That renders NMR a rather insensitive technique!
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�0 is the Larmor Frequency

�0=�B0, angular velocity
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NMR Spectroscopy
The electromagnetic spectrum
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NMR Spectroscopy
The Fourier Transform
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The Chemical Shift

The NMR frequency � of a nucleus in a molecule is mainly determined by its 
gyromagnetic ratio � and the strength of the magnetic field B

The exact value of � depends, however, on the position of the nucleus in the molecule or 
more precisely on the local electron distribution

 this effect is called the chemical shift

NMR Spectroscopy
The Chemical Shift

Nuclei, however, in molecules are never isolated from other particles that are charged 
and are in motion (electrons!).� 

Thus, the field actually felt by a nucleus is slightly different from that of the applied 
external magnetic field!! 

�E=h�=h�B/2�

NMR Spectroscopy
The Chemical Shift

The NMR frequency � of a nucleus in a molecule is mainly determined by its 
gyromagnetic ratio � and the strength of the magnetic field B

The exact value of � depends, however, on the position of the nucleus in the molecule or 
more precisely on the local electron distribution

 this effect is called the chemical shift
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NMR Spectroscopy
The Chemical Shift

�E=h�=h�Be�/2�

Beff, is given by B0-B�= B0-B0�=B0(1-�) 

and � is the chemical shift

� = 
�B0(1-�) 

2��
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�ref 

106 � 106 (�ref-�) 
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The Chemical Shift

750 MHz 1H spectrum of a small protein 
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Let us consider, two types of environment of the nucleus and because of that two 

resonance lines for nucleus of type A and type B. So,    

(1 ) (1 )
( )

B A o B o A

o A B

o AB

B B B B
B
B

σ σ
σ σ
δ

− = − − −
= −
=

 

In terms of resonant frequency 

(1 ) (1 )
( )

B A o B o A

o A B

o AB

ν ν ν σ ν σ
ν σ σ
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= −
=

 

This BAAB σσδ −=  is known as chemical shift. It is expressed as  

610B A
AB

o

ppm
ν νδ
ν
−

= ×  ……………………………….(24.2) 

 
 
What influences the chemical shift? 

(a) Shielding effects: 

When an atom is placed in a magnetic field, its electrons circulate about the 

direction of the applied magnetic field. This circulation causes a small magnetic 

field at the nucleus which opposes the externally applied magnetic field as shown 

in figure 24.4. 

 This ultimately decreases the effective magnetic field felt by the proton, 

shifting the signal to the higher magnetic field. This is called local diamagnetic 

shielding. 
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Figure-24.4 

ü  When	
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   atom	
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   placed	
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ü  When	
  H	
  atom	
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  bonded	
  with	
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  electronega)ve	
  atom,	
  this	
  
electronega)ve	
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  the	
  electron	
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  Thus	
  
the	
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  cloud	
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  and	
  as	
  a	
  result	
  
de-­‐shields	
  the	
  nucleus.	
  In	
  this	
  cause	
  the	
  resonance	
  occur	
  at	
  
a	
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  magne)c	
  field.	
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(b) De-shielding effect: 

(a) When H atom is bonded with an electronegative atom, this electronegative 

atom attracts the electron towards it. Thus the density of the electron cloud 

decreases and as a result de-shields the nucleus. In this cause the resonance 

occur at a lower magnetic field. The magnitude of the de-shielding rapidly 

decreases as the distance between the proton and electronegative atom 

increases. 

(b) In a paramagnetic substance the electron distribution is anisotropic about the 

atom. In this case, the electron circulation about the nucles generates a 

magnetic field. This result in de-shielding the nucleus. 

(c) In aromatic protons, such as in benzene molecule, the circulating current due 

to the delocalized π electrons produces a magnetic dipole. The induced field at the 

proton is parallel to the applied field and the result is therefore de-shielding. 
 The following figure explains the resonance condition for shielding and de-

shielding condition. 
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Consider two protons Ha and Hb - neighbors

αααα    αααα

αααα    ββββ

ββββ    αααα

ββββ    ββββ

Ha Hb

no spin-spin interaction spin-spin interaction

only two transitions
one for Ha and one
for Hb

four transitions,
two each for Ha and
Hb

Case 1 Case 2Effect of neighboring protons – spin-spin coupling

αααα

ββββ

δδδδ

Absence of any interacting protons
No neighboring protons
No spin-spin coupling – only a single 
peak for each chemically different 
proton
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http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/nmr/nmr1.htm

Multiplicity = (2nI+1)

For I = ½ ,  (n+1)

	
  
	
  

http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/nmr/nmr1.htm

Multiplicity = (2nI+1)

For I = ½ ,  (n+1)
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