Semester-I (Hons) Organic chemistry Notes

STEREOCHEMISTRY

by Dr. Samiran Mondal Assistant Professor Rammohan College, Kolkata

(R) and (S) Configuration: Assign Priority

 $C^{*}_{H^{*}}$

Atoms with higher atomic numbers receive higher priorities \succ

 $I > Br > CI > S > F > O > N > {}^{13}C > {}^{12}C > {}^{2}H > {}^{1}H$

In case of ties, use the next atoms along the chain of each group \succ

CH₂Br

Optical Activity

- > A substance is optically active if it rotates the plane of polarized light.
- In order for a substance to exhibit optical activity, it must be chiral and one enantiomer must be present in excess of the other.

optical activity is usually measured using light having a wavelength of 589 nm this is the wavelength of the yellow light from a sodium lamp and is called the D line of sodium

Ordinary (nonpolarized) light consists of many beams vibrating in different planes

plane-polarized light consists of only those Beams that vibrate in the same plane

Specific rotation

Observed rotation depends on the length of the cell and concentration, as well as the strength of optical activity, temperature, and wavelength of light.

$$[\alpha] = \frac{\alpha \text{ (observed)}}{c \bullet /}$$

Where α (observed) is the rotation observed in the polarimeter, *c* is concentration in g/mL, and *l* is length of sample cell in <u>decimeters</u>.

Problem

When one of the enantiomers of 2-butanol is placed in a polarimeter, the observed rotation is 4.05° counterclockwise. The solution was made by diluting 6 g of 2-butanol to a total of 40 mL, and the solution was placed into a 200-mm polarimeter tube for the measurement. Determine the specific rotation for this enantiomer of 2-butanol.

Solution

Since it is levorotatory, this must be (–)-2-butanol The concentration is 6 g per 40 mL = 0.15 g/mL, and the path length is 200 mm = 2 dm. The specific rotation is

$$[\alpha]_{\rm D}^{25} = \frac{-4.05^{\circ}}{(0.15)(2)} = -13.5^{\circ}$$

Racemic Mixtures

A racemic mixture contains equal amounts of the two enantiomers.

 \checkmark Equal quantities of d- and l-enantiomers.

and

- \checkmark Notation: (d, l) or (±)
- \checkmark No optical activity.
- The mixture may have different boiling point (b. p.) and melting point (m. p.) from the enantiomers!

Optical Purity

- > Optical purity is sometimes called enantiomeric excess (e.e.)
- > One enantiomer is present in greater amounts.

The specific rotation of (S)-2-iodobutane is +15.90°. Determine the % composition of a mixture of (R)- and (S)-2-iodobutane if the specific rotation of the mixture is -3.18°.

Sign is from the enantiomer in excess: levorotatory.

o.p. =
$$\frac{3.18}{15.90}$$
 X 100 = 20%
2/= 120% /= 60% d = 40%